The Job of a Wellsite Geologist

Amanda Barlow
Ms. Amanda Barlow

 The wellsite geologist (WSG) is the source of operational geological information on the rig and is responsible for all geology-related administrative wellsite activity. They are the operating company’s eyes and ears on the rig and as such, have to make sure that all possible geological and drilling information is gathered in a concise and timely manner.

While the wellsite geologist works in close cooperation with the company man on the rig he is not actually under his authority. Instead, the WSG reports directly to the “Operations Geologist” who is the “shore-based” intermediary between the geologist on the rig and the geology team in town who will be analyzing all the data. The unusual chain of command for disseminating key official geological data from the wellsite geologist follows this line of reporting:

WSG (rig) => Operations Geologist (town) => Drilling Superintendent (town) => Company Man (rig)

While the wellsite geologist is required to immediately notify the company man of any pertinent drilling and geological information, the company man generally cannot act on the information until the town-based drilling superintendent has officially confirmed it.

The wellsite geologist will report all key geological and drilling data to the operations geologist immediately as it comes to hand. It is then the responsibility of the “ops geo” to disseminate this information to all members of the onshore geology and drilling teams who need to know the information for decision-making.

All key drilling decisions are made in collaboration with every department involved in the drilling of the well to ensure that well control barrier criteria are met and any decisions made will not compromise the integrity of the well or process safety systems.

At the commencement of drilling, when the well will be drilled “riserless” with no cuttings coming to surface, there will often only be one wellsite geologist on the rig. There may be two or even three casing strings run before the riser is finally run and drilled cuttings are brought to the surface.

The wellsite geologist will be needed during these stages of drilling to confirm that suitable geological formations have been intersected in order to successfully set casing. This task is commonly referred to as “calling casing point”. It is critical that the casing shoe for the conductor and surface casing is set deep enough to withstand pressure from a “kicking” formation further down.

Surface casing is run to prevent caving of weak formations that are encountered at shallow depths. The wellsite geologist needs to identify when a competent formation is intersected to ensure that the formation at the casing shoe will not fracture at high hydrostatic pressure, which may be encountered later in the drilling of the well.

Because there are no drilled cuttings coming to surface all geological data is interpreted from one, or a combination of both, of the following sources:

  • Drilling parameters such as ROP (rate of penetration) and torque when there are no LWD (Logging While Drilling) tools in the BHA (Bottom Hole Assembly).
  • Real-time Gamma Ray and/or Resistivity data from downhole LWD tools.

Once the surface casing has been set and the BOP (blow out preventer) and riser are run to the seabed, all drilled cuttings will then be circulated to the surface, which means the days get a whole lot busier for the wellsite geologist. From this stage on there will generally be two wellsite geologists operating back-to-back 12-hour shifts.

Responsibilities

As the acting representative for the operating company’s geology team, the wellsite geologist will have the following responsibilities:

  • Evaluating offset data before the start of drilling
  • Analyzing, evaluating and describing formations while drilling, using cuttings, gas, formation evaluation measurement while drilling (FEMWD) and wireline data
  • Comparing data gathered during drilling with predictions made at the exploration stage;
  • Advising on drilling hazards and drilling bit optimization
  • Making decisions about suspending or continuing drilling. Ultimately, it’s the wellsite geologist’s responsibility to decide when drilling should be suspended or stopped.
  • Advising operations personnel both on the rig and in the onshore operations office about any pertinent geological or drilling information as it arises.
  • Supervising mudlogging, MWD (Measurement while drilling)/LWD (logging while drilling) and wireline services personnel and monitoring quality control in relation to these services.
  • Keeping detailed records, writing reports, completing daily, weekly and post-well reporting logs and sending these to appropriate departments.
  • Maintaining up-to-date knowledge of LWD and MWD tools and status of all equipment onboard and in transit to make sure the equipment is available and in working order when it is needed.

In expected HPHT (high-pressure high temperature) wells it is critical the wellsite geologist can identify (and immediately communicate) any identifying signs of increases in pore pressure. These can include the following telltale signs:

  • Changes in flow rate and active mud system volumes. If the formation pressure becomes higher than the hydrostatic pressure being exerted by the circulating drilling fluid then the mud will become “underbalanced” and the well will “kick”. If this kick isn’t detected early enough then a catastrophic blowout could occur.
  • Presence of “cavings” coming over the shakers. When drilling over-pressured shales, it is common for the formation to undergo stress relief causing chips of rocks to cave from the borehole wall. These overpressure “cavings” tend to be larger than normal cuttings and maybe concave or propeller-shaped.
  • Increase in ROP (rate of penetration) and volume of cuttings. A pressure transition zone will make drilling easier because of the trapped water-reducing compaction and the increase in pore pressure reducing differential pressure, allowing cuttings to be released more easily into the mud stream.
  • Changes in LWD data, in particular, resistivity and sonic, density and neutron.
  • Changes in drilling parameters, especially torque, drag, and overpull. This can be due to deterioration of borehole integrity causing an increase in the volume of cuttings and cavings in the circulating mud.
  • The rise in background gas level, changes in the composition of the gas, or presence of “connection” gas, which is a result of swabbing downhole hole when the pumps are turned off to make a connection (add another stand of drill pipe).
  • Changes in pump pressure. An influx of gas into a well may reduce the density of the drilling fluid and therefore it will require less pressure to circulate the drilling fluid.
  • Change in properties of mud.
  • Changes in downhole temperature. Generally, there will be a slight decrease in temperature immediately above the over-pressured zone and then a steady increase with depth at a higher rate than in the normally pressured zone above.

If the wellsite geologist identifies any potentially hazardous changes in the drilling, the driller and company man must be notified immediately, and then the operations geologist will be notified.

If a potentially dangerous situation is recognized then the drilling will be stopped immediately while the company man either makes a decision on what to do next or waits for official instructions from the drilling superintendent in town on how to proceed.

The wellsite geologists spend most of their time working in the mudlogging unit (like the hardworking one in the photo above J), which is where all the monitoring equipment for the rig is located and also where the mudloggers/sample catchers will deliver the cuttings samples for them to inspect and describe.

All rock cuttings are inspected under a microscope and a detailed description is written for every sample that is generally collected in composite 5, 10 or 20 m intervals.

Cuttings Descriptions

cuttings-Amanda

The cuttings descriptions need to be very detailed and follow an industry-standard format that includes (but is not restricted to) the following observations:

  • Rock types and percentage of each found in the sample
  • Color
  • Texture
  • Grain or crystal size
  • Sphericity, roundness, and sorting of sandstone grains
  • Type of cement and/or matrix
  • Any fossils or accessory minerals
  • Presence of hydrocarbon indications, such as fluorescence or “show”
  • Estimate of porosity

A detailed well log is created combining all the cuttings information, LWD, and MWD data and drilling parameter data, and submitted along with a daily report every 24 hours. When the wellsite geologist finishes the shift and hands over to the next shift they have to have all of the reporting and samples descriptions up-to-date at the time of them handing over.

To become a wellsite geologist, you’ll need a degree in geology or possibly even chemistry, geochemistry or geophysics. There is no formal wellsite geologist qualification, but you would need to obtain knowledge in areas such as wellsite and offshore safety management, wellsite operations, formation evaluation of wireline, FEWD logs, and risk assessment before starting as a wellsite geologist.

Most wellsite geologists start their offshore career working as a mudlogger, MWD engineer or mud engineer and gain knowledge in the fields that a WSG is responsible for. They also need to possess supervisory skills, the ability to work well under pressure and the ability to quickly make decisions.

As most wellsite geologists work as independent consultants and are employed on a contracting basis, it’s up to them to handle their own career progression. Any wellsite geologists who progress beyond this position will generally move into an operations geologist role, with a few even moving up into company man positions.

While a wellsite geologist might earn a lot per day there is little job security, and quite often no permanent rotation. They may only get flown onto the rig the day before drilling operations begin and flown off again immediately after the well is completed or wireline logging is completed. The date of your arrival and departure is quite often only known within days of it occurring so long-term social commitments are impossible to plan. You can either expect to have to fly out to the rig at very short notice or have unplanned months without any work…or even years when the industry is going through a downturn.

Like with many oil and gas roles, being a wellsite geologist can be a very demanding job but the rewards can certainly outweigh the risks if a sensible approach is taken to managing your time and finances. If unpredictability is not your thing then wellsite geology is not for you! Being away from home for several months of the year is part and parcel of the job so people with young families may find this job too demanding on their family life. This will always be the first and foremost decision you will have to make if considering to become a wellsite geologist.

This article is written by Amanda Barlow. Amanda Barlow is a wellsite geologist and published author of “Offshore Oil and Gas PEOPLE – Overview of Offshore Drilling Operations” and “An Inconvenient Life – My Unconventional Career as a Wellsite Geologist”,

 

6 thoughts on “The Job of a Wellsite Geologist

  1. Excellent job. Maybe the best compilation of information about the most important activity in a rig. Thank you so much.

    Eduardo Arelllano
    Wellsite Geologist Senior
    +593998325195

    Liked by 1 person

  2. An excellent job that connects every activity on the rig. I am a Wellsite Geologist too with over 20 years of experience in the oil and gas industry. I am now open to better opportunity if available for me. Ay Fagbe

    Liked by 1 person

    1. Thanks Ayo, I tried to cover as much as possible in the article to give people a good understanding of what it is that we do! Regards, Amanda

      Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s