About Dr. Roland N. Horne


Roland Horne 2018_03-1
Dr. Roland N. Horne

Dr. Roland N. Horne is the Thomas Davies Barrow Professor of Earth Sciences at Stanford University, and Senior Fellow in the Precourt Institute for Energy. He was also formerly Chairman of the Petroleum Engineering Department from 1995 to 2006.

He holds BE, Ph.D. and DSc degrees from the University of Auckland, New Zealand, all in Engineering Science.

Roland Horne is well recognized as an expert in geothermal resources. He received Geothermal Special Achievement Award from Geothermal Resources Council in 2015. He is the Technical Programme Chair of World Geothermal Congress 2020 in Reykjavik and a member of the Geothermal Resources Council (GRC) Board of Directors.

Dr. Horne is also well known for his work in well test interpretation, production optimization, and analysis of fractured reservoirs.

He is an internationally-recognized expert in the area of well test analysis and has twice been an SPE Distinguished Lecturer on well-testing subjects.

Under him, more than 50 people have obtained Ph.D. degrees at Stanford University.  Currently, Stanford University is recognized as one of the top schools in the world for the study of well test interpretation.

Prof. Roland Horne has written more than 90 technical papers, is the author of the book Modern Well Test Analysis and co-author of the book Discrete Fracture Network Modeling of Hydraulic Stimulation. He is an SPE Honorary Member, and a member of the National Academy of Engineering in the USA.

Prof. Horne will conduct a 5-day course – Geothermal Reservoir Engineering – on August 24-28, 2020 in Singapore. If you want more information about this course, please contact LDI Training at lditrain@singnet.com.sg.

He also conducts a 5-day Modern Well Test Analysis course. This highly regarded course has been attended by thousands of oil and gas, as well as geothermal professionals in many countries for more than 20 years. If you want more information about the course, please contact LDI Training at lditrain@singnet.com.sg.

Key Concepts and Methodologies for Effective Reservoir Simulation



Here are the key concepts and methodologies which a reservoir engineer should understand to simulate a reservoir effectively, according to Emeritus Professor Val Pinczewski of the University of New South Wales.

  • The internal structure of reservoir simulators – single, two and three phase reservoir simulators, black oil and modified black oil simulators, compositional simulators.
  • Limitations of numerical solution methods – truncation errors, numerical dispersion and stability, grid orientation effects.
  • Rock properties and saturation functions – design of effective SCAL programs and reservoir wettability, two and three-point saturation end-point scaling, rock-typing and hydraulic flow units, Leverett J-Function and Corey based models for relative permeability and capillary pressure, averaging saturation dependent property data, limitation of three-phase relative permeability and capillary pressure models.
  • Upscaling and relative permeability pseudo-functions – dynamic pseudo-functions, vertical equilibrium, and viscous dominated pseudo-functions.
  • Grid selection – advantages and disadvantages of structured, unstructured and hybrid gridding systems, corner-point geometry grids, PEBI grids, locally orthogonal grids, vertical heterogeneity and layering, guidelines for grid design.
  • Model initialization – Capillary-gravity equilibrium, initialization with zero capillary pressure, initialization using an average capillary pressure curve, initialization using the Leverett J-Function and a reference capillary pressure curve, initialization using Eclipse SWATINIT method. Effect of different options for run-time capillary pressure.
  • Aquifer modeling and history matching – unsteady-state water influx, Hurst and van Everdingen model, Carter-Tracy and Fetkovich models, material balance and aquifer history matching, guides for effective aquifer model history matching.
  • Well models and gas condensate reservoir modeling – condensate blockage and the two-phase pseudo-pressure method, implementation of the method in commercial reservoir simulators, gas condensate inflow relationships, PVT and fluid flow relationships for gas-oil relative permeability ratios, gas relative permeability ratio as a function of gas-oil relative permeability ratio, high velocity effects, positive and negative coupling, velocity dependent relative permeability and capillary number, guidelines for running gas condensate reservoir simulations using commercial reservoir simulators.

These are the topics Professor Val Pinczewski will discuss in the 5-day Advanced Reservoir Simulation course to be held on June 24-28, 2019 in Singapore.