How Are LPG and LNG Different?

Spherical tanks - shutterstock_674277817
Spherical tanks

LPG and LNG are by-products of petroleum and they are increasingly used for fuel as countries are increasingly concerned about their environment.

So what are LPG and LNG, and how are they different?

LPG – Liquefied Petroleum Gas

LPG is liquefied petroleum gas which consists mainly of propane and butane.

LPG is commonly used as fuel in heating appliances, cooking equipment, and vehicles. It is also increasingly used as an aerosol propellant and refrigerant, replacing chlorofluorocarbons to reduce damage to the ozone layer.

As a clean fuel, LPG is also increasingly used to power cars and buses. For this application, LPG is referred to as autogas or CNG (compressed natural gas).

At the normal condition, 15 degrees C and 14.7 PSI, the mixture of propane and butane is in the gaseous state. However, when its pressure is increased to above 120 PSI, the gaseous mixture turns into liquid. The liquefaction of the LPG makes it easier to store and transport.

In the liquid state, the volume of the mixture is only 1/270th of its volume in gaseous form. So, when LPG is released to the atmosphere, it will expand 270 times as it turns into vapor.

LPG is produced by extracting the propane and butane from the gas and condensate produced from oil reservoirs and gas reservoirs. This extraction process usually takes place in a gas processing plant located at an oil or gas field.

LPG is also produced from crude oil as one of the distillates from the refining process in a refinery.

LNG – Liquefied Natural Gas

LNG is liquefied natural gas. In remote places where a large quantity of natural gas is discovered and no gas pipeline is available, the produced natural gas is often turned into a liquid allowing it to be transported in bulk by LNG carriers. At its destination, the LNG is offloaded from the tanker and stored in insulated tanks. The LNG will be processed back into a gas, and the gas will be put into the pipeline for further distribution.

To produce LNG, natural gas consisting mainly of methane is super-cooled to -162 degrees C to turn it into a liquid. This decreases the gas volume 600 times making it easier to store and transport. It also plays a very important and useful role in meeting peak demands for gas, which the normal pipeline infrastructure cannot do. LNG is finding many new applications, and its demand is increasing. According to a Shell report, the global demand for LNG is expected to increase 4 to 5 % per year until 2030 while the demand for natural gas will increase at 2% per year.

In places where demand for natural gas cannot be met locally, the use of FSRU is gaining popularity. FSRU is a floating, storage and regasification unit. An FSRU can be constructed and installed quite quickly and economically to receive LNG from an LNG carrier and deliver the gas to the end-users as needed.

In summary, LPG and LNG have similarities and differences.

Similarities of LPG and LNG
  1. Both LPG and LNG are by-products of crude oil and natural gas.
  2. They are both in liquefied form making them easier for storage and transportation.
  3. They are commonly used as fuel.
  4. They are considered as clean fuel as they leave no smoke or soot.
Differences between LPG and LNG
  1. LPG consists mainly of propane and butane whereas LNG consists mainly of methane.
  2. LPG has a much higher heating value than LNG, and therefore it is also used to power cars and even buses.
  3. LPG is liquefied by increasing its pressure whereas LNG is liquefied by lowering its temperature.
  4. LPG is usually distributed to consumers in pressurized cylinders whereas LNG is gasified before it is transmitted to end-users by pipelines.
  5. Finally, as their names imply, petroleum – the crude oil, condensate, and natural gas – is the source of the propane and the butane contained in the LPG, whereas natural gas is the main source of the methane contained in the LNG.

The article is written by Jamin Djuang, the author of The Story Of Oil and Gas: How Oil and Gas are Explored, Drilled and Produced.

 

Gas Handling, Conditioning and Processing

This gas handling, conditioning and processing course is designed and presented by Dr Maurice Stewart to teach you how to design, select, specify, install, test and trouble-shoot your gas processing facilities.

This gas handling, conditioning and processing course has been attended by thousands of oil and gas professionals since Dr Maurice Stewart began teaching it more than 20 years ago. Dr Stewart is a co-author of a widely acclaimed “Surface Production Operations: Design of Gas Handling Facilities” along with Ken Arnold.

By attending this course, participants will:

1. Know the important parameters in designing, selecting, installing, operating and trouble-shooting gas handling, conditioning and processing facilities.
2. Understand the uncertainties and assumptions inherent in designing and operating the equipment in these systems and the limitations, advantages and disadvantages associated with their use.
3. Learn how to size, select, specify, operate, maintain, test and trouble-shoot surface equipment used with the handling, conditioning and processing of natural gas and associated liquids such as separators, heat exchangers, absorption and fractionation systems, dehydration systems, refrigeration, low temperature separation units, JT plants and compression systems.
4. Know how to evaluate and choose the correct process for a given situation.

Course Content

In this 5-day course, Dr Maurice Stewart will cover the following topics:
• Fluid properties, basic gas laws and phase behaviour
• Well Configurations, surface safety systems (SSS) and emergency support systems (ESS)
• Gas Processing systems, selection and planning
• Water-hydrocarbon phase behaviour, hydrate formation prevention and inhibition
• Heat transfer theory and process heat duty
• Heat exchangers: configurations, selection and sizing
• Gas-liquid separation and factors affecting separation
• Types of separators and scrubbers, and their construction
• Gas-liquid separators and sizing
• Liquid-liquid separators and sizing
• Three phase separator sizing
• Pressure vessels: the internals, mechanical design and safety factors
• Separator operating problems and practical solutions
• Gas compression theory, compression ratio and number of stages
• Compressor selection: centrifugal compressors vs. reciprocating compressors
• Vapor recovery units, screw compressors and vane compressors
• Compression station design and safety systems
• Performance curves for reciprocating compressors
• Absorption process and absorbers
• Adsorption process and adsorbers
• Glycol gas dehydration unit design and operation
• Glycol unit operating variables and trouble shooting
• Glycol selection and glycol regeneration
• Acid gas sweetening processes and selection
• Fractionation, refrigeration plants, expander plants and J-T plants
• Process control and safety systems

Course Materials

Participants will receive the following course materials:
1. The 3rd Edition of Volume 2 of the widely acclaimed “Surface Production Operations: Design of Gas Handling Facilities” written by Ken Arnold and Dr Maurice Stewart. This textbook continues to be the standard for industry and has been used by thousands since its first printing over fifteen years ago.
2. A comprehensive set of lecture notes for after course reading and reference
3. An extensive set of practical in-class “case study” exercises developed by Dr Stewart that will be used to emphasize the design and “trouble-shooting” pitfalls often encountered in the industry.

Who Should Attend

• Facility engineers, production engineers, design and construction engineers, team leaders, operations engineers, maintenance team leaders/engineers and other personnel who are or will be responsible for the designing, selecting, sizing, specifying, installing, testing, operating and maintaining gas handling facilities, gas plant facilities and gas pipelines.
• Experienced professionals who want to review or broaden their understanding of gas handling, conditioning and processing facilities and gas pipeline operation and maintenance.
• Professionals with little to moderate experience with the handling or processing of natural gas and associated liquids.

If you like to receive a pdf file of this course outline, please contact us.

Registration Information

Course date: November 25-29, 2019
Location: Singapore
Tuition: US$4500

Registration Form

If you or your people want to attend this course, please register HERE.

Contact information
Email: lditrain@singnet.com.sg
Website: https://oilandgascourses.org